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Abstract—a-Chlorocyclopentenones can readily be transformed into a variety of a-substituted cyclopentenones via their dimethyl-
trimethylene acetals.
� 2004 Elsevier Ltd. All rights reserved.
Scheme 2.
The development of effective new approaches to substi-
tuted cyclopentenones constitutes a worthwhile syn-
thetic pursuit because of their ubiquitousness in nature
and their usefulness as synthetic building blocks. The se-
quence developed several years ago in our laboratory,
consisting of regio- and stereoselective [2 + 2] cycloaddi-
tion of dichloroketene with olefins, followed by diazo-
methane ring expansion and dehydrochlorination,
leads efficiently to a-chlorocyclopentenones (Scheme
1);1 however, a proven procedure for replacing the a-
chloro group in cyclopentenones by other a-substituents
has not been available.

Recently, in the context of the total synthesis of several
guaiane sesquiterpenes,1d it became necessary to effect
the transformation of an a-chlorocyclopentenone into
an a-methylcyclopentenone. Since no effective method
could be found for the conversion of an a-chloro enone
into an a-alkyl enone, a procedure was developed for the
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Scheme 1.
required methylation.2 The extension of this procedure
for the preparation of a variety of a-substituted conju-
gated cyclopentenones is now described.

In early optimization studies it was found that when the
ethylene acetal of a-chlorocyclopentenone 1a1b,c

(Scheme 2) was allowed to react for 1h at �78 �C with
a preformed solution of LDBB3 (Yus and co-workers�
standard metallation conditions2b) and then treated with
excess iodomethane for 20min, followed by dilute HCl,
the desired a-methylcyclopentenone (3a, CH3)

1b,4 could
be obtained in 59% yield, together with 5% of the a-un-
substituted cyclopentenone (3a, H). Some improvement
was realized by using LDMAN5 instead of LDBB; opti-
mal results were ultimately achieved with in situ gener-
ated LDMAN as the electron transfer reagent at
�65 �C in combination with the dimethyltrimethylene
acetal, which is known to be more stable to6a (and
in6b) organometallics than the ethylene acetal. With
these modifications, the above methylation could be rep-
roducibly achieved in 90% isolated yield.

Various electrophiles can be used in the sequence to give
the corresponding a-substituted cyclopentenones (Table
1). For example, the vinyllithium intermediate derived
from dimethyltrimethylene acetal 2a7 on treatment with
three primary alkyl iodides produces the corresponding
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Table 1. Synthesis of diversely a-substituted cyclopentenones

Entry Substrate Electrophile Product Yielda (%)

1

Cl
O

O

2a

CH3I

CH 3

O

3aab

90 (6)

2 2a CH3CH2I

CH 2CH 3

O

3abc

77 (17)

3 2a CH3CH2OSO2CF3 3ab 51 (14)

4 2a CH3(CH2)4I

(CH2)4CH 3

O

3acd

66 (28)

5 2a CH3(CH2)7I

(CH2)7CH 3

O

3ad

75 (15)

6 2a (CH3)3SiCl

Si(CH3)3

O

3aee

67 (12)

7 2a (CH3)2CO

C(CH3)2OH

O

3af

51 (35)f

8 2a (CH3)2NCHO

CHO
O

O

2ag

63g (4)

9 2a
O

CH2CH(OH)CH 3

O

3ah

51h

10

Cl
O

O

2b

CH3I

CH 3

O

3bai

88 (5)

11

Cl
O

O

2c

CH3I

CH 3

O

3caj

66 (8)

12

Cl
O

O

CH3(CH 2)7

2d

CH3I

CH 3

CH3(CH 2)7

O

3da

77 (4)

a Yields are for isolated, homogeneous products. Except for entry 1, yield optimization was not attempted. Yields in parentheses are for

a-unsubstituted enone side products.
b Refs. 1b and 4.
c Ref. 8.
d Ref. 9.
e Ref. 10.
f 4-Hydroxy-4-methylpentan-2-one was also isolated.
g Acetal 2ag was not hydrolyzed.
h Hydroxy enone 3ah (dr=1:1) suffered partial decomposition on silica gel chromatography.
i Ref. 4.
j Ref. 11.
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a-alkyl cyclopentenones 3ab,8 3ac,9 and 3ad (entries
2,4,5) in good overall yields, despite some protonation
of the vinyllithium through elimination in the halides
(and, perhaps, adventitious introduction of moisture).
Triflates appear to be inferior to iodides (entries 2 and
3). Chlorotrimethylsilane, acetone, and dimethylform-
amide have also been used to produce, respectively, a-
trimethylsilyl cyclopentenone 3ae10 (entry 6), tertiary
alcohol 3af (entry 7), and aldehyde 2ag (entry 8); the
reaction with propylene oxide yields selectively the ex-
pected secondary alcohol 3ah (entry 9). In addition,
two other bicyclic a-chloro enone acetals, bicyclo-
[5.3.0]decenone derivative 2b and bicyclo[3.3.0]octenone
derivative 2c, as well as a monocyclic a-chloro enone
acetal, cyclopentenone derivative 2d, have also been
found to undergo facile lithiation–alkylation–hydrolysis
to give in good yields enones 3ba,4 3ca,11 and 3da
(entries 10–12), respectively.12

In summary, it has been shown that a-chlorocyclopent-
enones can readily be transformed, via their dimethyltri-
methylene acetals, into a variety of a-substituted
cyclopentenones. The LDMAN-mediated metal–chlo-
rine exchange, the key step, is effected through in situ
generation of the reagent, which is both convenient
and efficient. Since a-chlorocyclopentenones themselves
are easily prepared, this methodology provides a simple
route to a-substituted cyclopentenones and nicely com-
plements other procedures for accessing these useful
compounds.

Acknowledgements

We thank Prof. P. Dumy for his interest in our work,
The Research Ministry for fellowship awards to A.G.
and Y.C., and the Université Joseph Fourier and the
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